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We propose a simple model that describes the dynamics of efficiencies of competing agents. Agents com-
municate leading to increase of efficiencies of underachievers, and an efficiency of each agent can increase or
decrease irrespectively of other agents. When the rate of deleterious changes exceeds a certain threshold, the
system falls into a stagnant phase. In the opposite situation, the average efficiency improves with asymptoti-
cally constant rate and the efficiency distribution has a finite width. The leading algebraic corrections to the
asymptotic growth rate are also computed.
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Nonequilibrium statistical mechanics applies to diversefundamental driving mechanism for economy. We assume
fields from biology to finance, social and cognitive scienceghat the interaction equates the efficiencies of underachievers
[1-5]. Indeed, the framework of nonequilibrium statistical to the efficiencies of better performing agents.
mechanics is ideally suited for describing systems composed The efficiency model formalizing the above features is
of many units that interact according to simple rules anddefined as follows. Leh;(t) be the efficiency of agernitat
exhibit a complex large-scale behavior. Thus, the importantime t. Efficienciesh;’s are non-negative integer numbers
task is to construct simple stochastic models incorporatingvhich evolve stochastically. Specifically, in an infinitesimal
basic characteristics of the dynamics of systems under studtime intervalAt, everyh;(t) can change as follows:
which can then be analyzed by employing existing tools of
nonequilibrium statistical mechanics. The hope is that these
models can reproduce essential features of the original sys- (i) h;j(t)—max}h;(t),h;(t)] with probability At, where
tems and enhance understanding of the dynamics of thegle agenij is chosen randomly. This move is due to the fact
systems. that each agent tries to equal its efficiency to that of a better

In this Rapid Communication, we introduce a modelperforming agent in order to stay competitive.
where competing units interact with each other. Despite its (ii) h;(t)—h;(t)+1 with probability pAt. This incorpo-
simplicity, the model exhibits rich phenomenology, includ- rates the fact that each agent can increase its efficiency, say
ing a nonequilibrium depinning phase transition. In addition,due to innovations, irrespective of other agents.
the model is analytically tractable by using the techniques (iii) h;(t)—h;(t) — 1 with probabilityqd(h;(t))At, where
developed in the context of front propagation problgm8]. 0(x) is the Heaviside step function. This corresponds to the
The model can be considered as a polynuclear growth modédct that each agent can lose its efficiency due to unforeseen
with desorption where the degrees of freedom are the heightgroblems such as labor strikes. Note, however, that since
of a growing interface, a language more familiar to the stah;(t)=0, this move can occur only when(t)=1.
tistical physics community6]. However, the rules of the (iv) With probability 1-[1+p+q#(h;(t))]At, the effi-
model are also suited to an economic situation where theiencyh;(t) remains unchanged.
degrees of freedom are the efficiencies of competing agents.

Throughout the rest of the paper, we shall use the language
of efficiency, though we stress that the focus or the results The model exhibits rich behavior, including a delocaliza-
need not be limited only to the economic situation. tion phase transition as the parametprand g are varied.

Our model mimics the dynamics of efficiencies of com- Above a critical line,p>p.(q), the average efficiency in-
peting agents which could be airlines, travel agencies, insuicreases linearly with time; fgp<p.(q), the system is stag-
ance companies, etc. In today’s competing global economyjant, i.e., the efficiency distribution becomes stationary in
the performance of a company is continuously judged in théhe large time limit. This delocalizatiofor depinning phase
market and the index of performance depends on how effitransition is dynamical in nature and is different from the
cient the company is. Rather than trying to incorporate aldepinning transitions found in equilibrium systems with
details of performances of competing agents, we choose @uenched disorder. Similar delocalization transitions have re-
model that accounts for the dynamics of efficiency in thecently been found in a variety of nonequilibrium processes
simplest form. We represent the efficiency of each agent by g9—-13].
single nonnegative number. The efficiency of every agent LetP(h,t) denote the fraction of agents with efficieniay
can, independent of other agents, increase or decrease s&d-timet. One can easily write the evolution equation for
chastically by a certain amount which we set equal to unityP(h,t) by counting all possible gain and loss terms. For
In addition, the agents interact with each other which is théh=1, this equation reads
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dP((jftLt) :_P(h't)h,Eh P(h )= (p+ Q)P0 1-p—q+qe M +pe =A*[—qe M +pet]. (5
et The corresponding minimum rate ,,(p,q)=v(\*) is
+qP(h+1t)+pP(h—1t) given by Eq.(4), orv mn=—qe " +pe*" as it follows from
h-1 Eqg. (5). An analysis of Eqs(4) and (5) shows that there
+P(h,t) E P(h',t). (1) exists a critical linep.(q) in the (p,q) plane,
h'=0

+q- forq=1
In writing Eq. (1), we have taken into account that when the pe(q)= 1+q-2g forg (6)
0

total number of agents diverges the joint probability distri- forgs<1,

bution P(h,h’,t) of two agents having efficiencidsandh’

factorizes, P(h,h’,t)=P(h,t)P(h’,t), and the mean-field such that(\)>0 for all \=0 as long ap>p.(q). For a
theory becomes exact. fixed q, as p—ps(q) from above, v,,—0 and for

It proves convenient to consider the cumulative distribu-0<p<<p.(q), the curvev(\) crosses zero at=»\; and\
tion, F(h,t)=3,,=,P(h’,t). From Eq.(1), we immediately =X\, with A\;>X;. Whenk ;<A<\, v(\) becomes nega-
derive the evolution equation féf(h,t), tive. This tells us that there might be no traveling wave so-
lution for 0<p<p.(q), and we anticipate that the efficiency
distribution should become stationary. Note that der 1,
p.(q) =0 and this regime does not occur.

With the above picture in mind, we now discuss the se-
+pF(h—11). 2 lection principle more carefully. Consider an exponentially
decaying initial conditionF(h,0)~e ™ *" with «>0. When
p>p.(q), the rate is positive for alk>0 andv(\) has a
unique minimum ah =\*. Applying the selection principle

Equation (2) is a nonlinear difference-differential equa- we find that for sufficiently steep initial conditiona>\*,
q q the selected growth rate is,,=v(\*). Consider now suf-

tion and is, in _general, _hard o solve_exactly. Fprtunatelyﬁciently extended initial conditionse<<\*. In this case
many a;ymptotlc pro.pertles can be derived analytically Wlth-f (x) must decay at most s ° and therefore the growt’h
out solving Eq.(2). First we note thaf(h,t) approaches a rate is selected among(\), Eq. (4), with \<a. The selec-
traveling wave form as it follows, e.g., from direct numerical N T

integration of Eq.2). Thus, we seek a solution of the form tior\lNr;]rincip<le now implies t?at the stellected r_agejiiz(a). )

F(h.t)=f(h—vt). By inserting it into Eq.(2) we find that enp=pc(q), we must separately consider two cases:

f(x) satisfies g>1 andg<1. Forg>1, v(\) as given by Eq(4) becomes
negative in the region;<A\<\,. We find that for all«

dF(h,t)

@t —F2(h,t)+(1—-p—q)F(h,t)+qF(h+1})

Note that this equation is valid for ali=1, and by the
probability sum rule we have(0,t) =1 for arbitraryt. Also,
F(h,t)—0 ash—o for all t.

df(x) ) <\, the system still admits a traveling wave solution and
Vg~ PO+ A-p-a)f () +af(x+1) the selected rate is=v(a). However, fora>\,, the sys-
tem no longer admits a traveling wave solution. Instead, the
+pf(x—1), (3)  distribution F(h,t) reaches a stationary limiP,(h) ast

—o0, By putting the time derivative equal to zero on the
which should be solved subject to the boundary conditionseft-hand side of Eq(2), we find that the stationary effi-
f(—~)=1 andf(«)=0. To determinev, we linearize Eq. cjency distribution decays exponentialfy,.(h) ~e~*", with
(3) in the tail region,x—o. The resulting linear equation

admits an exponential solutiof(x)~exp(—AX). By insert- —1+p+q+(1—p—q)2—4pq
ing this asymptotics into the linearized version of ES).we m(p,q)=In 5 . (1N
find that the growth rate (\) is related to the decay expo- P
nenti via . . . .
Note thatu(p,q) is real below the critical line, i.e., when
1-p—q+qge M pe g>1 andp=p.(q). Interestingly,u(p,q) remains finite on
v(N)= x : (4 the critical linep=p.(q). From Egs(7) and(6) we find the

critical decay rate fog>1:

Thus, we have a family of eigenvalues parametrized\by

According to a general selection principle that applies to a () =ulpe(a),q]=—In[1-q 2. (8)
wide class of nonlinear equatiofi 8], only one specific rate

out of this family of possiblev’s is selected. Usually, the For q=<1, p.(q)=0. Whenp—0, we havev,—0 and
minimum rate is selected. For sufficiently steep initial con-A* —c. The divergence of the decay exponafitindicates
ditions, the minimum rate is universal, while extended initialthat whenp=0 andq<1, the system still admits a traveling
conditions might affect the magnitude of tredmissible wave solution and the selected ratevisv(«) if we start

minimum rate. with  an exponentially decaying initial condition,
The functionv(\) in Eq. (4) has a unique minimum at F(h,0)~e “". Of course, for compact initial conditiofise.,
A=\* given by the solution oflv/d\=0, or whenF(h,0)=0 for sufficiently largeh], the efficiency dis-
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tribution becomes stationary in the long time limit. We have 18
verified all the above assertions via direct numerical integra-

tion of Eq. (2). "oy

Although one cannot providexplicit expressions for the 141
growth rate in the developing phase, near the critical line
pc(q) the growth rate considerably simplifies. First we note p 125 .
that on general scaling grounds one would guess that above 1
the critical line, the growth rate,,(p,q) should be a func-
tion of p—p. with critical behavior 08
06}
Umin~ (P— pc)B- 9
041
The actual behavior is found by a straightforward analysis of
Egs.(4) and(5) to yield 02}
0 .
- 0 5
P—Pc(a) for q>1
(Va— 1 (@) q
Umin_’< 4% forq=1 (10) FIG. 1. Thick line represents the critical locus,(q)=1+q
(1/p —24/q, for the mean-field theory. The-’s indicate numerically
1—q obtained critical points in one dimension. For sharply decaying ini-
In(1/p) for0=q<1, tial conditions, the system is developing wher p.(q) and stag-

| nant whenp=<p.(q).
whereu.(q) is given by Eq.7). Equation(10) implies that Thus, for p>p.(q), the system is in the developing
the mobility exponenp in the scaling relatiort9) is equal to phase, with(h) increasing according to Eq(12). For
1, 1/2,and 0 fog>1, g=1, andg<1, respectively. Inthe < (q) with g>1, the system is localized anh) ap-
last situation Q<1 and p—0), the growth rate still ap- proaches a time-independent constant in the long time limit.
proaches to zero but it occurs in an extremely slow iNVersgor p=0 andq<1, the system is in the developing phase for
logarithmic fashion. _ unbounded initial efficiency distributions, with the growth
The relaxation of the growth rate(t) towards itS rate dependent on initial conditions. For economically rel-
asymptotic valuev i, exhibits an interesting algebraic be- gygnt compact initial conditions, the regirpe=0 andq<1
havior. Specifically, the leading correction is proportional tOpelongs to the stagnant phase.
t™*, the nextis of ordet™ 2 etc. Similart~* correction was  The mean-field version of the efficiency model is natural
first derived by Bramson in the context of a reaction-in the interconnected modern economy. In a situation with
diffusion equatior{8], and was subsequently rederived andjimited communication, however, the efficiency model in a
generalized by van Saarlog44] and Brunet and Derrida |ow-dimensional space rather than in the fully connected
[15]. The next correction was recently derived by Ubert a”dgraph might be more appropriate. In this case, agents are
van Saarloog16]. In contrast to Refs|8,14-16, we con-  pjaced on a finite-dimensional lattice. The microscopic dy-
sider the difference-differential equation. Fortunately, thenamical stepgi)—(iv) remain the same except that in move
techniqueq8,14-18 still apply [13,17. Following, for in- (i) the agenj is chosen to be one of the nearest neighbors of

stance, an approach of R¢16], one finds i. Unlike the mean-field theory, the correlations betwhgs
3 at different sites remain nonzero in finite dimensions even in
(1) =0 min— 2_*tfl+At*3/2+ O(t?) (11  the thermodynamic limit. We have studied this model nu-
)\’ )

merically in one dimension. The results are shown for lattice
. . size L=1000 (we verified that for such large systems, the
with A=37Y42(qe™" +pe*")} 4\*) "2 The explicitly finite size effect is insignificaint Once again, there is a de-
displayed terms areniversaj they do not depend on initial |ocalization transition in the [,q) plane across a critical
condition as long as it is steep enou@le., it falls off faster  jine, as shown in Fig. 1. The efficiency distributi®xgh,t) at
than e‘**x). The following terms in Eq(11) starting from  different times in both phases is presented in Fig. 2.
the O(t~?) correction are nonuniversal. Thus, not only any We now stress important differences between mean-field
sufficiently steep initial profile relaxes to a unique profile, and finite-dimensional situations. In the former case the na-
the approach to that profile occurs alongasymptotically  ture of the two phases depends on the steepness parameter
unique trajectory. Note also that the very slow relaxation ~ while in one dimension the nature of the final state is inde-
of the growth rate leads to a logarithmic correction to thependent ofa. For example, in the developing phase the sys-
average efficiency, tem always has a traveling wave solution with a rate that
3 depends omp and gq but does not depend on. We have
_ tested this fact numerically for several values @f This
() =vmint = 5 INt+O(1). 12 result is rather counterintuitive, as it suggests that correla-
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In (d+1) dimensions, one can interpret the efficiency

0.05 ; .
oodsl - ] hi(t) as the height of a surface growing ordalimensional
222? substrate. In this language, our efficiency model represents a
004r =5 1 continuous time polynuclear growiPNG) model with de-
] B Lo sorption. The continuous PNG model without desorption has
= osl . ) h | been studied within mean-field thedr8] and was found to
A T i - be always in the moving phase as expected. From the general
0025} X 5 1 analogy to PNG models, we expect that the moving phase in
‘ the efficiency model corresponds to a growing interface be-

longing to the Kardar-Parisi-Zhan@{P2) universality class

; ; , class of the delocalization transition. Phase transitions in sev-
% o T T 208 %  eral PNG models in (1) dimensions belong to the di-
h rected percolationDP) universality class(see, e.g., Ref.

[19]). Other similar growth models exhibit phase transitions

FIG. 2. DistributionP(h,t) at timest=200, 600, and 1000 in that do not belong to the DP universality cla€s11]. It

the moving phase fop=3, q=4. The inset shows the distribution remains an open question whether the phase transition in the
efficiency model in (& 1) dimensions belong to the DP

at the same times in the localized phase forl, q=4. For
g=4, the critical point isp.(q)~1.7. universality class.

In summary, we have investigated a simple model of the
tions seem to restore universality that mean-field theor)?ynam.'cs of efficiencies of _co.mpetmg agents. The model
lacks. Another important distinction is a very different be- ak.e.s Into account StOCha.S“C increase and decrease of the
havior of the width of the efficiency distribution in the de- _eff|C|en(_:y of every agent, lndepen_dent of other agents, af‘d
veloping phase. Indeed, in mean field the width is constanfnteractlon b_etween the agents which equates the efficiencies
while in one dimension it increases with tintgee Fig. 2 of underachievers to that of petter performlmg_ agents..\.Ne
Moreover, the width increases as a power law have shown that the model displays a depinning transition

: '’ from a stagnant to a growing phase.

= J(h?)—(h)?~t* for larget, with 8~0.31 in (1+1) di-
mensions. One of us(P.L.K.) acknowledges support from the NSF.
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0018 X | : [6]. The numerically obtained width exponegt=0.31 in

001} « ' 3 (1+1) dimensions is consistent with the KPZ prediction
B=1/3. It would be interesting to determine the universality
#
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